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Abstract

Embodied Instruction Following (EIF) tasks fo-
cus on agents that navigate and interact with
environments based on natural language in-
structions. Unlike other embodied intelligence
tasks, EIF requires agents to adapt to unseen
environments and interact dynamically, creat-
ing significant challenges. This paper explores
the performance of EIF methods Prompter and
FILM with updated foundational models for
computer vision and natural language process-
ing. Using the ALFRED dataset, a simulated
environment for vision-and-language naviga-
tion, we evaluate the impact of integrating
DepthAnything and MaskDINO. Our findings
indicate that ground-truth depth and instance
segmentation significantly boost performance,
with DepthAnything outperforming Prompters
depth estimator by 40% (improvement in aver-
age MSE) without fine-tuning, and MaskDino
achieving competitive but slightly lower re-
sults compared to Prompter’s existing MaskR-
cnn. These results demonstrate the potential of
updated models to improve embodied agents’
adaptability and effectiveness in complex tasks.
With further finetuning, these methods could
significantly surpass their predecessors.

1 Introduction and Problem Definition
(1-1.25 pages)

Developing embodied agents is crucial for advanc-
ing artificial intelligence, particularly in enhancing
interactions between AI and the physical world.
These agents, including robots and virtual entities,
are designed to operate in both real-world and sim-
ulated environments. This development is essential
for creating systems that can understand and manip-
ulate their surroundings, interact seamlessly with
humans and other agents, and autonomously per-
form complex tasks. A specific area of interest
is Embodied Instruction Following (EIF), where
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agents follow natural language instructions to ex-
ecute long-horizon tasks that require both naviga-
tion and interaction with the environment. Un-
like other tasks in embodied intelligence, EIF chal-
lenges agents to navigate unseen environments and
interact dynamically with them, handling variations
in tasks, language instructions, and actions. This
complexity makes EIF one of the most human-like
and challenging tasks, pushing the boundaries of
adaptability, autonomy, and usefulness of AI sys-
tems in everyday applications.

Initial efforts in EIF predominantly employed
end-to-end models via imitation learning or rein-
forcement learning (Pashevich et al., 2021). Due to
the high training costs and low sample efficiency
of these algorithms, along with their poor gener-
alization outside of their training sets, state of the
art methods have replaced this end to end approach
with more modular approaches (Inoue and Ohashi,
2022; Blukis et al., 2022; Sarch et al., 2023; Jain
et al., 2024; Kim et al., 2023; Song et al., 2023;
Ding et al., 2023; Gu et al., 2023). These ap-
proaches enable the use techinques from computer
vision and natural language processing to process
raw RGB into meaningful features using object de-
tection, scene recognition, semantic segmentation,
and natural language parsing.

Recent advances in natural language process-
ing and computer vision have increased the per-
formance and generalizability of these techniques
by leveraging vast amounts of unlabeled data us-
ing unsupervised losses. Existing EIF methods
are agnostic to their modules, and thus their per-
formance may be improved by integrating these
foundational models. In this paper, we investigate
how Prompter and FILM, two state-of-the-art EIF
methods, improve when leveraging updated foun-
dational models. We evaluate our agents on the
ALFRED dataset (Shridhar et al., 2020), a col-
lection of simulated environments which targets



the intersection of vision-and-language navigation
(VLN) and task-oriented interaction within these
simulated domestic settings.

In this work, we evaluate how Prompter and
FILM improve with an updated vision pipeline.
We ablate over ground-truth depth and instance seg-
mentation and find that ground-truth depth and in-
stance segmentation drastically improve model per-
formance. Furthermore, the gap between Prompter
and FILM vanish when ground truth depth and
segmentation are used. With this as motiva-
tion, we incorporate two state of the art models,
DepthAnything (Yang et al., 2024) and MaskDino
(Li et al., 2023a). Attempts to successfully fine-
tune DepthAnything on ALFRED failed, and thus
we evaluate the performance of DepthAnything
zero-shot and find that it outperforms Prompter
depth estimator by 40% while not being fine-tuned.
Additionally, we fine-tune MaskDino (Li et al.,
2023a) on a fraction of the training set (1/20th)
and find that it has competitive but worse perfor-
mance than the existing MaskRcnn model used by
Prompter..

2 Related Work and Background

2.0.1 Foundation Models
GPT-4 (Achiam et al., 2023) is a group of state-of-
the-art multimodal foundation models with excep-
tional reasoning capabilities in language and vision,
but is not open source.

LLaMA-2 (Touvron et al., 2023) is a group of
large language models that have state-of-the-art
performance among open source LLMs.

SAM (Kirillov et al., 2023) is a foundation
model for image segmentation in 2D, and SAM3D
(Yang et al., 2023) extends SAM into the 3D space
for 3D segmentation.

CogVLM (Wang et al., 2023) is a recent power-
ful open-source vision-language foundation model.
CogAgent (Hong et al., 2023) is a closely-related
vision-language model trained specifically for un-
derstanding of graphical user interfaces.

2.0.2 Multimodal Robotics with LLMs
EgoTV (Hazra et al., 2023) proposes a Neuro-
Symbolic Grounding (NSG) approach that trans-
lates natural language into a graph of symbolic
queries to capture the compositional and temporal
structure of tasks.

ManipLLM (Li et al., 2023b) incorporates LLMs
to reason with the object-centric manipulation task

by encoding and projecting visual inputs into the
language space and fine-tune a LLM with both the
output template prompt and the projected vision as
inputs.

SAGE (Geng et al., 2023) performs instruction-
following manipulation tasks by incorporates vi-
sual inputs into natural language descriptions using
VLMs, then combine it with the instruction to ask
for planning from LLMs.

2.0.3 Instruction-Following Embodied Agents

FILM (Min et al., 2021) uses a modular method
to build a structured representation of the environ-
ment that builds a semantic map of the scene and
performs exploration with a semantic search policy.

Episodic Transformer (Pashevich et al., 2021) is
an end-to-end multimodal transformer that encodes
language inputs and the full episode history of vi-
sual observations and actions to output actions and
objects.

BAS (Chiang et al., 2021) examines the align-
ment between vision and language modalities of ex-
isting methods on the ALFRED dataset by propos-
ing an intrinsics metric boundary adherence score.

Prompter (Inoue and Ohashi, 2022) proposed an
updated FILM++ which doubled FILM’s perfor-
mance, then proposed an update to FILM’s frame-
work by replacing its semantic search module with
language model prompting.

HLSM (Blukis et al., 2022) proposes a persistent
spatial semantic representation and uses hierarchi-
cal reasoning to effectively execute long term tasks
by separating the reasoning into a learned high-
level controller defining subgoals and low-level
controllers, including engineered and learned con-
trollers, executing the subgoals.

HELPER (Sarch et al., 2023) is a framework
with an external memory of language-program
pairs that parses dialogues into action programs
through retrieval-augmented LLM prompting.

ODIN (Jain et al., 2024) challenges the belief
that 2D and 3D perception requires unique architec-
tures by introducing a model that can segment and
label both 2D RGB images and 3D point clouds,
using a transformer architecture that alternates be-
tween 2D within-view and 3D cross-view informa-
tion fusion. It shows enhanced performance for
the ALFRED benchmark when incorporated in the
HELPER framework as replacement for 2D per-
ception module, demonstrating its advantage in 3D
understanding with 2D inputs.



CAPEAM (Kim et al., 2023) combines Context-
Aware Planning separating instructions into sub-
goals and Environment-Aware Memory that caches
the detected object locations in the semantic spatial
map to enhance the agent performance with the
knowledge of consequences of previous actions.

LLM-Planner (Song et al., 2023) consolidates
the visual inputs and environment feedback of the
embodied agent into the language modalities by
textual descriptions, and repeatedly query LLMs to
make action decisions.

ECL (Ding et al., 2023) introduces a framework
enabling robotic agents to learn and apply visual
concepts and depth understanding through instruc-
tion following, mimicking how humans learn from
interaction and demonstration.

ConceptGraphs (Gu et al., 2023) presents a
pipeline for grounding visual inputs in an open-
vocabulary 3D scene graph, using VLMs and
LLMs to caption each of the segmented objects
and record them as node, using LLMs to build po-
tential interaction reasonings between each nodes
as edges, and then utilizing LLMs to reason across
the built scene graphs to execute complex reason-
ing tasks, while using SLAM to track a mapping
of its environment. It demonstrates great potentials
for Instruction-Following Embodied Agents, but
has the notable limitation of large inference costs.

2.0.4 Other Relevant Studies
CLIP (Radford et al., 2021) introduces a frame-
work for alignment between texts and images using
contrastive vision-language pre-training.

CLIP-Dissect (Oikarinen and Weng, 2022) auto-
matically describe the function of individual hidden
neurons inside vision networks leveraging the CLIP
model to enhance interpretability without the need
for labeled data.

Matryoshka Representation Learning (Kusupati
et al., 2022) encodes information at different gran-
ularities that allows a single embedding to adapt to
the computational requirements of various down-
stream tasks.

RelaTe (Bhagat et al., 2023) presents an ap-
proach to integrate a symbolic knowledge graph
into a state-of-the-art recognition model, combin-
ing with a neuro-symbolic architecture and training
approach that incorporates extra relationships from
a few examples, that significantly enhances few-
shot classification by leveraging interconnected en-
tity presence.

Concept Policy Model (Zabounidis et al., 2023)

incorporates interpretable concepts from a domain
expert into models trained through multi-agent re-
inforcement learning by requiring the model to first
predict such concepts then utilize them for decision
making.

SplaTAM (Keetha et al., 2023) enables precise
camera tracking and high-fidelity reconstruction for
dense SLAM by online optimization of 3D Gaus-
sian Splatting using differentiable rendering.

OpenIns3D (Huang et al., 2023) introduces a
3D open-vocabulary instance segmentation method
requiring no 2D inputs, and maps the inputs to 2D
synthetic images to incorporate existing 2D open-
vocabulary instance segmentation methods.

Depth Anything (Yang et al., 2024) presents a
robust solution for monocular depth estimation us-
ing large-scale unlabeled data. Unlike traditional
approaches that rely on depth sensors or stereo
matching, Depth Anything leverages a data engine
to automatically annotate vast amounts of unla-
beled images, significantly expanding data cover-
age and reducing generalization error. Its zero-shot
capability and extensive evaluations across multi-
ple datasets demonstrate its strong generalization
and robustness in varied conditions.

Mask DINO (Li et al., 2023a) extends the DINO
framework by incorporating a mask prediction
branch to support all image segmentation tasks,
including instance, panoptic, and semantic segmen-
tation. It utilizes query embeddings from DINO to
predict a set of binary masks through a dot-product
with a high-resolution pixel embedding map, mak-
ing it scalable and efficient. Mask DINO is noted
for its simplicity and adaptability to joint large-
scale detection and segmentation datasets, signifi-
cantly outperforming existing specialized segmen-
tation methods. Its notable achievements include
setting new benchmarks on instance segmentation
(54.5 AP on COCO), panoptic segmentation (59.4
PQ on COCO), and semantic segmentation (60.8
mIoU on ADE20K), making it the best-performing
model among those with fewer than one billion
parameters.

3 Task Setup and Data

3.1 Environment

We evaluate our work on the ALFRED set of envi-
ronments (Shridhar et al., 2021). ALFRED com-
bines natural language processing and vision-and-
language navigation to assess an agent’s ability to
follow complex, sequential instructions using both



visual and linguistic cues. The dataset emphasizes
navigating and interacting with objects in simulated
indoor environments, requiring understanding of
object properties, spatial relationships, and contex-
tual information. ALFRED introduces challenges
in long-horizon task planning and decision-making
for achieving multi-step objectives, and it employs
ProcTHOR, an extension of AI2-THOR, for proce-
dural generation of diverse indoor settings, crucial
for VLN and task-oriented research. This approach
ensures a broad spectrum of environment configu-
rations, countering overfitting and fostering model
generalization across dynamic scenarios, essential
for advancing embodied AI capabilities.

3.2 Collecting Training Data
We collect training data using the following
methodology suggested by the FILM paper. Below
is our methodology:

1. Initialization: Run the Prompter with com-
plete ground truth and a random semantic pol-
icy. Execute the current action, and at each
step, determine the next action with a proba-
bility of 1

3 .

2. Randomized Rotation: At each step, set
the horizon to zero and rotate left four times,
recording the number of objects seen from
each orientation. Rotate towards the direction
where the most objects are observed.

3. Data Capture: Save the RGB image, segmen-
tation mask, and depth mask at horizons 0 and
15 degrees (where 0 represents the agent look-
ing straight ahead). With a 50% probability,
save these masks at additional horizons: 30,
45, and 60 degrees.

4. Full Rotation Check: If selected, rotate the
agent 180 degrees and save the masks at hori-
zons 30, 45, and 60 degrees. Return the agent
to the original pose.

5. Interaction Actions: If the current action
involves interaction, with a 50% probability,
save the masks at horizons 0, 15, 30, 45, and
60 degrees. Rotate the agent 180 degrees
again, and save the masks at the same horizons
before returning to the original position.

6. Repetitions: Follow the above steps, repeat-
ing actions based on the Prompter’s instruc-
tions, to ensure comprehensive data collec-
tion.

This methodology was used to collect data in 2,047
of the 20,000 training episodes. FILM uses the full
20,000; however, we found that on only 1,000 tra-
jectories, we already collected over 300GB worth
of rgb images, depth maps, and instance segemen-
tations.

3.3 Depth Eval. Setup
To evaluate the effectiveness of our depth estima-
tion models, we constructed a dataset using valid
unseen data from 128 episodes containing syn-
chronized RGB images, baseline depth maps, and
ground truth depth maps. This dataset was de-
signed to test the models under diverse conditions
to assess their generalization capabilities.

3.3.1 Dataset Preparation
Our dataset was prepared by selecting episodes that
include a variety of scene types, ensuring a robust
challenge for the models. Each episode consists of
ground truth depth maps and corresponding RGB
images used for depth prediction.

3.3.2 Evaluation Protocol
We employed the following procedure to evaluate
the models:

1. RGB images were converted to grayscale to
normalize the input data.

2. Depth predictions were made from the RGB
images using both the ”Depth Anything”
model and the baseline model.

3. The predicted depth maps were processed to
convert disparities into depths, making them
comparable to the ground truth.

4. Mean Squared Error (MSE) was calculated
between the predicted depths and the ground
truth for both models.

The evaluation metrics were compiled and analyzed
to quantitatively assess the performance of each
model. Additionally we qualitatively assess the
performance of our model by observing the depth
predictions against the ground truth as well as the
error differences.

3.4 Instance Seg. Eval. Setup
We used the mean average precision metrics from
the COCO Challenge (Lin et al., 2014), including
AP, AP50, and AP75, to compare the performance
of our fine-tuned Mask DINO against Prompter’s
original module.



4 Proposed Model

We use Depth Anything (Yang et al., 2024) as our
depth estimation model and Mask DINO (Li et al.,
2023a) as our instance segmentation engine.

Egocentric 
RGB

Depth Estimation 
(Depth Anything)

Instance Segmentation
(Mask Dino)

3D Point Cloud Top-Down 
Semantic Map

Our 
Contribution

Figure 1: Visual Processing Pipeline. We use Depth
Anything for depth estimation and Mask Dino for In-
stance Segmentation.

4.1 Depth Estimation
We incorporated the ”Depth Anything” model, a
pre-trained foundation model designed for robust
monocular depth estimation. A significant chal-
lenge we encountered during the fine-tuning pro-
cess was the model’s inherent computation of dis-
parity rather than depth. This fundamental differ-
ence led to difficulties in adjusting the scale to com-
pute relative depth accurately. Various methods we
attempted to apply in order to transform disparity
into a usable depth format struggled under a typi-
cal mean squared error (MSE) loss, largely due to
scale discrepancies. Qualitatively looking at the
images we observed that the optimization process
was further complicated by the model producing
predominantly black images, indicating a failure in
adapting the transformations required for our spe-
cific dataset. This issue suggested a misalignment
between the model’s output and the expected range
of depth values within our application, leading to
substantial difficulties in achieving meaningful op-
timization.

Despite these challenges, the strong generaliza-
tion capability of the pre-trained ”Depth Anything”
model across a wide range of conditions and its
robust performance as documented in the work by
Yang et al. ultimately made it suitable for our pur-
poses in its original, unmodified form. Utilizing
the model without further fine-tuning allowed us to
leverage its advanced capabilities and avoid the ex-
tensive computational resources typically required
for training from scratch. The foundation model’s

proficiency in handling diverse imaging conditions
proved to be important, providing reliable depth
estimations across various scenes in our dataset
without the need for extensive retraining.

4.2 Instance Segmentation

We used Mask DINO with a pre-trained ResNet50
backbone for instance segmentation. We trained
a Mask DINO semantic segmentation head with
the relevant 95 classes that FILM’s segmentation
engine requires and fine-tune the backbone with
one-tenth learning rate. We used a confidence level
threshold of 0.5 to filter out inaccurate segmenta-
tion masks. The segmentation mask is trained on
a subset of our collected dataset. Specifically, the
subset is created by a one-out-of-ten equal-spacing
subsampling of 1,637 episodes, which amounts to
48,571 images with ground truth annotations of
detected objects, including 770,255 total detected
objects. We trained Mask DINO for 70,000 itera-
tions of images (i.e. 1.44 epochs of our subset) for
evaluations.

5 Baselines

5.1 Unimodal Baselines

In the Embodied Instruction Following (EIF) task
setting, a purely unimodal baseline is insufficient.
Language is needed for goal-setting and a visual
stream is needed for navigation. However, the
Seq2Seq and Episodic Transformer (ET) models,
evaluated in scenarios focusing solely on either vi-
sual or linguistic input, shed light on the unique
challenges and limitations inherent to each modal-
ity within EIF tasks.

5.1.1 Seq2Seq Unimodal Variants
Seq2Seq, initially conceptualized for language
translation, adapts to EIF by processing input to
predict actions. Its unimodal variants include:

• Visual-Only Seq2Seq: This variant leans
entirely on visual data to navigate and per-
form tasks, omitting linguistic guidance. The
model’s performance in this setting highlights
the pivotal role of linguistic instructions in
providing context and objectives for tasks, of-
ten resulting in suboptimal performance when
operating with visual data alone.

• Language-Only Seq2Seq: Operating with-
out visual inputs, this version attempts to rely
entirely on textual instructions. This approach



tests the model’s capability to comprehend
and strategize task execution based purely on
linguistic input, underscoring the challenge of
precise action prediction and environmental
interaction in the absence of visual context.

5.1.2 Episodic Transformer Unimodal
Variants

ET employs a transformer architecture for a com-
prehensive processing of inputs. Its unimodal adap-
tations are designed to evaluate the efficacy of sin-
gular modalities:

• Visual-Only ET: Focusing solely on visual
inputs, this version aims to understand and
navigate the environment. The limitations of
this approach become apparent in tasks that
require detailed instructions or interactions
not discernible through visual analysis alone,
indicating the necessity for linguistic data in-
tegration.

• Language-Only ET: By excluding visual
cues, this model evaluates the sufficiency of
textual instructions for task completion. This
setup reveals the challenges in navigating and
interacting with the environment without the
aid of visual information, emphasizing the im-
portance of multimodal inputs for effective
task execution.

As shown in our previous report, these Unimodal
baselines unilaterally achieve a 0% success rate.
This finding is excellent in that it shows us that
for meaningful results, both visual and language
modalities are needed. However, it also shows that
meaningful analysis beyond a modality’s necessity
requires a multimodal approach.

5.2 Simple Multimodal Baselines

The Seq2Seq and ET models also serve as base-
lines for basic multimodal integration, highlighting
the initial steps towards combining visual and lin-
guistic data to inform action prediction.

5.2.1 Seq2Seq
For EIF tasks, Seq2Seq employs a Convolutional
Neural Network (CNN) to encode visual informa-
tion and a Long Short-Term Memory (LSTM) net-
work for processing linguistic instructions. This
method directly integrates these inputs to predict
a sequence of actions, demonstrating an effective
end-to-end solution for multimodal integration.

5.2.2 Episodic Transformer (ET)
ET enhances the Seq2Seq approach by incorpo-
rating a multimodal transformer architecture that
consolidates visual observations with linguistic in-
structions over the course of interactions. Unlike
Seq2Seq, ET is designed to maintain a compre-
hensive history of inputs and actions, facilitating
a more nuanced understanding and prediction of
future actions. This longer context length, per se,
allows for longer-term strategies for navigation and
environment interaction.

5.3 Complex Multimodal Baselines

In exploring the FILM and Prompter frameworks,
our ablation studies focus on key components that
influence spatial reasoning, linguistic processing,
and environmental interaction. Below are the spe-
cific parameters varied in our studies, outlined to
facilitate understanding of their roles and configu-
rations.

5.3.1 Centering Strategy
- Local Adjustment (for Prompter): Adapts in-
teraction positions based on local environmental
feedback, aiming to enhance Prompter’s interaction
efficiency.
- Simple (for FILM): Utilizes a straightforward ap-
proach to interaction positioning without dynamic
adaptation, serving as a comparative baseline for
Prompter’s local adjustment strategy.

5.3.2 Language Processing
- Granular Text (GT): Both models employ de-
tailed linguistic inputs to ensure that the focus re-
mains on the interplay between linguistic instruc-
tions and other model components.

5.3.3 Depth Perception
- Learned Depth: Incorporates algorithms to au-
tonomously interpret spatial relationships, enhanc-
ing the model’s navigational accuracy.
- Ground Truth Depth: Relies on exact depth
information from the environment, bypassing the
need for depth learning to simplify spatial under-
standing tasks.

5.3.4 Semantic Policy Generation
- Masked Language Modeling (MLM) for
Prompter: Enhances language understanding and
semantic decision-making through the use of MLM
techniques.
- Convolutional Neural Network (CNN) for



Table 1: Feature Comparison of EIF Methods

Features / Methods Seq2Seq E.T. FILM Prompter

End-to-End X X
Modular Design X X
Uses Semantic Maps X X
LLM-enabled X

FILM: Applies CNNs for generating semantic seg-
mentation and policy decisions, providing a foun-
dation for assessing MLM’s impact in Prompter.

5.3.5 Semantic Segmentation
- Ground Truth: Utilizes precise, manually
verified segmentation data to provide a high
accuracy benchmark.
- Learned Segmentation: Assesses the model’s
performance using segmentation generated through
learning algorithms, focusing on the effectiveness
of autonomous environmental understanding.

These parameters delineate the scope of our ab-
lation studies, aiming to isolate and evaluate the
contributions of specific model features to the ef-
fectiveness of the FILM and Prompter frameworks
in executing EIF tasks. More specifically, these
ablation studies consisted of testing each combi-
nation of the aforementioned parameters. Given
two potential settings for each the centering strat-
egy, depth perception, semantic policy generation,
and semantic segmentation, our study evaluated
16 different model configurations. Moreover, by
methodically adjusting these model settings, we
sought to elucidate the intricate dynamics between
model architecture, linguistic integration, and spa-
tial reasoning within complex task environments.

6 Results (1 page)

In analyzing the performance of our agent across
different ablations, we performed four ablations.
Prompter proports to improve the semantic policy
and centrering stratagies used in FILM, we ablate
over both these differences to find the optimal con-
figuration of the model. We further ablate over
ground truth segmentation / depth for a total of 16
ablations.

6.1 Quantitative Metrics
We measure Success Rate (SR), Action Success
Rate (Action SR), and average steps for each ab-
lation. SR indicates the overall success rate of an

ablation, while Action SR measures the effective-
ness of agent actions within the environment. Fail-
ures include scenarios like an agent blocked by an
object or misusing tools (e.g., using a spoon to cut
lettuce). An agent is terminated after 10 failures,
emphasizing the importance of successful actions
for episode success.

The average steps are further split by episode
success, indicated which episodes fail due to timing
out and which fail due to repeated action failure.

Furthermore, for our updated models, we per-
form a comparison between the models used in
FILM/Prompter and our updated models by calcu-
lating the average MSE of both on the evaluation
set we collected. This can be seen in Table 7.

For Instance Segmentation, we perform
a comparison between the models used in
FILM/Prompter and our updated models by
calculating the Average Precision (AP) for both
models on the evaluation set we collected. This
can be seenin Table 8.

6.2 Qualitative Metrics
The qualitative metrics collected in this study en-
compass various elements related to model behav-
ior and task outcomes across the 16 ablation studies.
These include:

• Task Descriptions and Failure Reasons: A
qualitative analysis of specific episodes and
the reasons for failures, highlighting errors in
object detection, interaction, and navigation.

• Error Message Clusters: Grouping of error
messages based on content, providing insights
into common error themes such as navigation
obstacles, object identification, interaction is-
sues, and system-related errors.

• Qualitative Observations of Agent Behav-
ior: Observations of agent behavior during
task execution, such as wandering off, misin-
terpreting objects, or struggling with spatial
constraints.



• Example Cases of Model Failures: Detailed
descriptions of cases where models failed to
complete tasks, emphasizing common pat-
terns and underlying causes of these failures.

These qualitative metrics were gathered to better
understand the types of errors that occur in dif-
ferent ablation studies, the nature of agent behav-
ior during task execution, and the broader patterns
of performance challenges faced by the models.
The collected metrics provide a comprehensive per-
spective on the qualitative factors that can impact
overall success and guide further analysis and im-
provements in the model’s performance.

7 Analysis (2 pages)

In this section, we present a comprehensive anal-
ysis of the 16 different ablation studies conducted
on our Prompter/FILM. Each ablation focuses on a
unique aspect of our model, aiming to understand
its impact on the overall performance. The key met-
rics evaluated include success rate, action success
rate, average steps per episode, steps in failure and
success cases, and a detailed error analysis for each
ablation study. Summarized in Tables 2, 3, and 4.

The ablation studies are divided into two cat-
egories: Local Adjustment (LA) and Simple (S),
these ablate over the semantic policy used, S being
FILMs semantic policy, and LA being Prompters
policy.

7.1 Performance analysis
We begin by analyzing Table 2), which summa-
rizes the outcomes of ablation studies, comparing
CNN and MLM under Simple and Local Adjust-
ment conditions. This analysis focuses on the use
of Ground Truth and Learned models for instance
segmentation and depth, examining how these af-
fect Success Rates (SR) and Action Success Rates
(Action SR). A key insight is the influence of the
semantic policy, particularly with learned models,
and the varying impact of Local Adjustment based
on these semantic policies.

When using Ground Truth data, the Success
Rates across both Simple and Local Adjustment
setups remain consistently high, with minimal vari-
ation across different semantic policies. This sug-
gests that the choice of policy has a negligible im-
pact when Ground Truth data is used, indicating
that accurate and reliable data can overcome dif-
ferences in semantic approach. In particular, CNN
with Local Adjustment shows a Success Rate of

96.09%, with Action Success Rates above 95%.
Similarly, MLM achieves comparable success with
Ground Truth data, showing 92.97% for Simple
and 92.19% for Local Adjustment, again with high
Action Success Rates. This highlights the robust-
ness of these configurations when high-quality data
is used.

However, when switching to learned models, the
choice of semantic policy becomes a significant fac-
tor, leading to noticeable performance disparities.
In the GT-S/L-D configuration, where the depth
information is learned, Success Rates drop across
the board, especially for CNN in the Simple setup
(72.66%) and Local Adjustment (78.12%). Despite
these declines, Action Success Rates remain high,
demonstrating that while overall task success may
wane, agents can still execute individual actions
with a high degree of accuracy.

The Local Adjustment setup generally exhibits
greater resilience when using learned models, es-
pecially with CNN, suggesting that this adjustment
may help compensate for the reduced quality of
learned data. However, the results indicate that
the impact of Local Adjustment diminishes when
using Ground Truth, emphasizing that semantic
policy choice plays a more critical role when data
reliability is compromised.

For the LL configuration, which represents fully
learned setups, the Success Rates drop significantly,
highlighting the challenges in achieving success-
ful task completion with predicted data. Here, the
choice of semantic policy is crucial, with CNN
showing a Success Rate of 56.25% in Simple and
60.94% in Local Adjustment, while MLM has
slightly higher rates (69.53% and 68.75%, respec-
tively). Despite these challenges, Action Success
Rates remain steady, pointing to the robustness of
action execution, even in less reliable conditions.

Overall, the analysis underscores that the choice
of semantic policy has the most significant impact
when using learned models, with Local Adjustment
showing a mitigating effect, particularly with CNN.
When Ground Truth data is used, these differences
diminish, highlighting the critical role of accurate
data in ensuring consistent and high-performing
task completion.

Practially, this means that for improved models,
the differnces between Prompter and FILM should
vanish and that the semantic policy proposed by
Prompter largly only improves performance under
imperfect depth / segmentation.



Table 2: Summary of Simple and Local Adjustment Ablation Studies for CNN and MLM - Ground Truth (GT), or
Learned (L), Segmentation (S), and Depth (D)

CNN MLM
Simple Local Adjustment Simple Local Adjustment

Ablation SR Action SR SR Action SR SR Action SR SR Action SR
GT 89.84% 96.01% 96.09% 95.42% 92.97% 96.02% 92.19% 95.05%
GT-S/L-D 72.66% 94.68% 78.12% 94.52% 82.03% 95.00% 76.56% 95.00%
L-S/GT-D 58.59% 95.00% 67.97% 94.25% 63.28% 95.41% 68.75% 94.99%
LL 56.25% 94.78% 60.94% 93.77% 69.53% 95.43% 68.75% 95.22%

Table 3: Local Adjustment ablation studies - Ground Truth (GT) and Learned (L), Segmentation (S), and Depth (D)
Average steps (AvS) of Success and Failure cases

CNN MLM
Ablation Avg. Steps AvS Success AvS Failure Avg. Steps AvS Success AvS Failure
GT 141.27 121.80 620.2 148.40 115.53 536.2
GT-S/L-D 182.09 143.76 319.0 197.21 134.71 401.37
L-S/GT-D 330.68 184.08 641.76 323.81 173.08 655.43
LL 358.48 240.27 542.9 334.17 206.64 614.75

7.2 Analysis by number of steps

Local Adjustment Ablations (Table 3): The
Ground Truth (GT) setup exhibited the most pro-
ficient performance, with lower average steps in
both success and failure cases compared to learned
configurations. Notably, the GT S/D configuration
outperformed others, suggesting the critical role of
accurate, real-world data in enhancing the model’s
effectiveness. On the contrary, the LL V/T configu-
ration showed the highest average steps, indicating
challenges in handling learned visual and textual
inputs simultaneously.

Simple Ablations (Table 4): Simplifying the
ablations presents an interesting contrast. Here,
the GT configurations again demonstrate superior
performance, reinforcing the value of ground truth
data. However, the reduced complexity in Sim-
ple (S) ablations did not necessarily translate to
lower average steps across all cases. We believe
this shows the impact of environmental and task
complexity on the agent’s learning and decision-
making processes.

These analyses underline the importance of ac-
curate data and the complexity of interactions be-
tween the agent’s perception and action mecha-
nisms. While GT configurations consistently show
promise, the variations in performance across dif-
ferent ablations show the need for further improve-
ment into optimizing the learned to perform closer
to it’s ground truth components for enhanced agent
performance.

In order to provide a more granular understand-
ing of where the ablated models were failing, anal-
ysis was also conducted on the actions and objects
for which the models most commonly failed its
high-level tasks. An investigation into the problem-
atic actions was first conducted, averaging across
all ablations to account for model-specific factors.

Figure 2: Task Success
Rate Across Actions

Figure 3: Frequency of
Actions

Figure 2 shows the probability of completing
each action. The results show that the model
achieves excellent performance on simple actions,
such as toggling objects. Conversely, the models
performed extremely poorly on almost all of the
other, more complicated tasks, such as slicing an
object or putting it at some location. These find-
ings indicate that the model performance could
be improved by improving the model’s mecha-
nism of predicting and executing actions especially
those that are more complicated. For example, the
completion rate of high-level tasks could be im-
proved by addressing the problems, such as agent-
environment collisions, that are preventing the com-



Table 4: Simple ablation studies - Ground Truth (GT) and Learned (L), Segmentation (S), and Depth (D) Average
steps (AvS) of Success and Failure cases

CNN MLM
Ablation Avg. Steps AvS Success AvS Failure Avg. Steps AvS Success AvS Failure
GT 155.27 104.99 600.08 168.92 124.34 758.44
GT-S/L-D 218.16 165.24 358.80 196.20 136.51 468.65
L-S/GT-D 361.75 189.56 605.42 363.42 175.56 687.19
LL 375.66 192.19 611.54 329.34 192.12 642.49

pletion of complex actions.

In order to provide better context of these suc-
cess rates, the frequency of the actions were also
plotted and are given in figure 3. This figure fur-
ther supports the need to address the issues with
these more complicated tasks, such as “PutObject”
or “PickupObject”. This is because, despite being
more error prone, these actions comprise a much
larger portion of the agent’s executed actions.

Similar analysis was also performed with action-
objects, the objects with which an agent was tasked
with completing its actions. The results shown in
figure 4 show the probability of the model complet-
ing its high-level task(s) given the corresponding
action-objects to be found. This figure interest-
ingly shows that the model has a 0% success rate
with a few objects, such as an “AppleSliced” or
a “Drawer”. From other analysis conducted on
find rates of action-objects, it was observed that
many the low-success action objects correspond-
ingly have very low probabilities of being found
by the model. These results indicate that the vi-
sion component of the model fails to detect certain
classes of objects. Since the model can’t complete
a task with an object if it can’t find it, this demon-
strates that model performance could be improved
by addressing issues in the vision component, such
as visual synonymy (e.g,m “AppleSliced” vs. “Ap-
ple”).

Figure 5, depicting the probability of action-
objects found by the ablation models, supports this
view. This is because all eight of the ablations in
this figure have learned semantic-mapping compo-
nents and considerably lower find rates than that of
ground-truth semantic mapping methods (100%).
Moreover, this demonstrates that by integrating a
better vision component which finds action-objects
with greater proficiency, our proposed model could
improve upon the performance of current models.
These results are shown in figure 5.

Figure 4: Probability of task success across action-
objects

Figure 5: Percentage of action-objects found across
ablations

7.3 Cluster Analysis of Error Messages
Looking into errors can help us identify if they are
problematic. The only errors that are of interest
are those which of which the probability of success
is < 1. However, it is difficult to categorize our
errors to determine which key words are similar
to others manually. Therefore, we cluster our er-
ror messages using standard NLP tokenization and
vectorize using TF-IDF.

Categorical label insights from NLP processing:

• Cluster 0: Navigation and Obstruction
Errors This cluster appears to focus on



Figure 6: Visualization of error message clusters

movement-related errors, potentially involv-
ing the agent encountering obstacles. Key-
words such as ”Moving”, ”blocking”, and
specific object references like ”sidetable”,
”safe”, and ”chair” suggest scenarios where
the agent’s path is obstructed by furniture or
objects, leading to navigation issues.

• Cluster 1: Object Identification and Count-
ing Errors The presence of numbers along-
side ”found”, ”object”, and ”apple” hints at
errors related to object identification or count-
ing tasks. This cluster might be capturing
scenarios where the agent fails to accurately
count or identify specific items, such as apples
or cups, within the environment.

• Cluster 2: Interaction and Recognition
Errors Keywords like ”Locate”, ”interact”,
”mask”, ”bad”, ”could”, and ”target” point
to errors involving the agent’s ability to rec-
ognize or interact with objects. It suggests
difficulties in correctly identifying targets or
executing interactions with them, possibly due
to masking or bad recognition.

• Cluster 3: Object-Object Action Execution
Errors With terms such as ”Knife”, ”hold-
ing”, ”slicing”, and ”agent”, this cluster likely
represents errors related to specific action ex-
ecutions from one object to another, such as
slicing object X with a knife. The keywords
indicate challenges the agent faces in perform-
ing precise actions or holding items correctly.

• Cluster 4: Physical Interaction and Colli-
sion Errors This cluster signifies errors aris-

ing from physical interactions within the en-
vironment, like ”collision”, ”teleport”, and
”hand”. Errors might involve unintended col-
lisions with objects or teleportation issues, af-
fecting how the agent manipulates or moves
around objects like basketballs or apples.

• Cluster 5: Placement and Validity Errors
Keywords such as ”Valid”, ”found”, ”place”,
”positions”, and ”receptacle” suggest errors
related to placing objects in valid positions
or receptacles. It captures situations where
the agent struggles to find a valid spot for
object placement or encounters objects that
are already placed.

• Cluster 6: System and Reference Errors
This cluster focuses on technical errors, with
terms like ”system”, ”instance”, ”exception”,
”nullreferenceexception”, indicating issues
with system references, instances, or un-
handled exceptions. These are likely non-
environmental errors that occur at a system
or code level.

• Cluster 7: Validation and Identification Er-
rors With ”Invalid”, ”id”, ”object”, and refer-
ences to numerical codes, this cluster could
be highlighting errors related to object valida-
tion or ID errors. It might involve the agent
incorrectly identifying objects or dealing with
invalid object states.

7.4 Analysis of Success Probabilities
After clustering the error messages based on their
textual content, we further analyzed each cluster
to determine the average probability of success,
assuming an error occurs. This analysis provides
insight into which clusters contain errors that are
more likely to be successfully mitigated or resolved.
The average success probabilities for each cluster
are as follows:

These success probabilities were calculated by
aggregating the success rates of individual errors
within each cluster, weighted by their frequencies.
This approach allows us to understand not just the
common themes within each cluster (as indicated
by the top terms analysis) but also how likely errors
within these themes are to be overcome.

Notably, Cluster 7 demonstrates the highest aver-
age success probability, but only contains 5 errors.
This suggests that errors within this cluster, despite
their occurrence, are generally more manageable



Cluster Weight Avg. Success Probability
0 71 0.41
1 35 0.07
2 26 0.34
3 14 0.00
4 17 0.26
5 20 0.47
6 23 0.33
7 15 0.59

Table 5: Average success probabilities for error message
clusters

or less critical. Conversely, Cluster 1 shows an
average success probability of 0.07, indicating that
errors categorized here are particularly challenging
to resolve successfully. This variance underscores
the value of clustering in identifying areas of con-
cern and potential focal points for improvement in
error handling mechanisms.

7.5 Qualitative Analysis and Examples

We have selected 5 representative episodes for qual-
itative analysis, including failure cases for all the
16 ablations, and displayed these samples in Table
6. In each of the episodes, the task is separated into
subgoals of required actions, defined as a list of
tuples, each tuple containing the object to interact
with and the type of interaction. We analyzed the
behavior of each ablations in more details by exam-
ining the detailed trajectory logs and the respective
RGB inputs and produced segmentation maps, and
we will discuss the more fruitful findings by each
episode.

7.5.1 Episode 0
In Episode 0, the task is to find the CellPhone and
examine it under the light of FloorLamp. The re-
quired actions are defined as [(’CellPhone’, ’Pick-
upObject’), (’FloorLamp’, ’ToggleObjectOn’)].

In L-S/GT-D FILM S and LL V/T FILM S, Floor-
Lamp was successfully detected, but the object is
not yet reachable. The semantic policy failed to
plan accordingly to approach the object and inter-
act with it, instead wondering off and attempting
to find the object again, but then identified a desk
lamp as FloorLamp, shown in Figure 7, which they
failed to interact with and got stuck on. This prob-
lem of semantic search policy only occurs in FILM
without local adjustment, so this problem might be
fixed by the local adjustment centering strategy to
properly interact with the FloorLamp during the

first successful detection.

Figure 7: The desk lamp shown in the upper left corner
is wrongly detected as the FloorLamp in the task. The
model’s confusion between the FloorLamp and a desk
lamp is one of the many visual synonymy problems
the existing methods encounter, and demonstrates the
bottleneck of the visual segmentation in the ALFRED
task.

In L-S/GT-D Pmpt S, the vision pipeline wrongly
recognized a part of the TV drawer as a CellPhone,
and kept trying to interact with it, as shown in
Figure 8, resulting in the failure. This particular
example insisted on picking up this non-existant
CellPhone, and while some other setups do en-
counter the same incorrect visual detection, they
moved on after several failed interactions and fi-
nally succeeded.

7.5.2 Episode 7
In Episode 7, the task is to wash a bowl and
put it into a cabinet, and the required actions for
the task are defined as [(’Bowl’, ’PickupObject’),
(’SinkBasin’, ’PutObject’), (’Faucet’, ’ToggleOb-
jectOn’), (’Faucet’, ’ToggleObjectOff’), (’Bowl’,
’PickupObject’), (’Cabinet’, ’OpenObject’), (’Cab-
inet’, ’PutObject’), (’Cabinet’, ’CloseObject’)].

In GT S/D FILM S, GT S/D Pmpt S, GT-S/L-D
FILM S, and GT-S/L-D FILM LA, the agent success-
fully finds the cabinet and opens it, but failed to
put the bowl into the cabinet due to spacing issues.
We can observe that this problem mostly happens
in runs without local adjustment, highlighting the
importance of the centering strategy, while also sug-
gesting that there is still room for improvements.



Ablation Episode 0 Episode 7 Episode 19 Episode 48 Episode 110
GT S/D FILM S Success. Failure, no place to

put object.
Success Failure, object

failed open/close.
Failure, hand object

collision.
GT S/D Pmpt S Success. Failure, no place to

put object.
Success. Success. Failure, timeout at

1000 steps.
L-S/GT-D FILM S Failure, timeout at

1000 steps.
Failure, cabinet not

opened.
Failure, can’t slice

object without
knife.

Failure, timeout at
1000 steps.

Failure, hand object
collision.

L-S/GT-D Pmpt S Failure, object ID
error.

Failure, cabinet not
opened.

Failure, can’t slice
object without

knife.

Failure, timeout at
1000 steps.

Failure, object not
found.

GT-S/L-D FILM S Success. Failure, no place to
put object.

Failure, timeout at
1000 steps.

Success. Failure, Object ID
invalid.

GT-S/L-D Pmpt S Success. Success. Failure, can’t slice
object without

knife.

Success. Failure, object not
found.

LL S/D FILM S Failure, timeout at
1000 steps.

Failure, blocked by
chair.

Failure,
GameObject blocks

action.

Failure, timeout at
1000 steps.

Failure, cup can’t
be sliced.

LL S/D Pmpt S Success. Success. Failure,
GameObject blocks

action.

Failure, timeout at
1000 steps.

Failure, object not
found.

GT S/D FILM LA Success. Success. Success Success. Failure, timeout at
1000 steps.

GT S/D Pmpt LA Success. Failure, blocked by
cabinet.

Success. Success. Failure, timeout at
1000 steps.

L-S/GT-D FILM LA Success. Failure, no error
message.

Failure, timeout at
1000 steps.

Failure, timeout at
1000 steps.

Failure, hand object
collision.

L-S/GT-D Pmpt LA Success Success. Failure, blocked by
counter.

Failure, timeout at
1000 steps.

Failure, hand object
collision.

GT-S/L-D FILM LA Success. Failure, no place to
put object.

Success. Failure, bad
interact mask.

Failure, timeout at
1000 steps.

GT-S/L-D Pmpt LA Success. Success. Failure, timeout at
1000 steps.

Success. Failure, timeout at
1000 steps.

LL S/D FILM LA Failure, blocked by
FP219:Cube.

Success. Failure,
GameObject blocks

action.

Failure, timeout at
1000 steps.

Failure, blocked by
chair.

LL S/D Pmpt LA Success. Success. Failure,
GameObject blocks

action.

Failure, timeout at
1000 steps.

Failure, object not
found.

Table 6: Samples of failure cases for FILM (FILM) and Prompter (Pmpt) Ground Truth (GT) and Learned (L),
Segmentation (S), and Depth (D) with Local Adjustment (LA) or Simple (S) ablations.

In L-S/GT-D FILM S and L-S/GT-D Pmpt S, the
visual pipeline wrongly detected the dishwasher as
the cabinet, resulting in the ”cabinet not opened”
error, again highlighting the bottleneck nature of
visual segmentation in the ALFRED task.

In LL FILM S and some successful runs, we
found that the agent attempted to put the bowl into
the kitchen sink from the other side of the kitchen
counter (backside of the faucet) as the sink would
be within the valid interaction range, but there are
two chair objects in the way. This observation is
repeatedly found in tasks in the kitchen involving
interactions with the sink, and we believe it is the
primary cause of the chair failures. This should be
a limitation of the ALFRED task, as this action is
perfectly reasonable in real-life scenarios.

7.5.3 Episode 19
In Episode 19, the task is a more com-
plicated, involving cutting a tomato with a
knife, put the knife in the sink, then put the
sliced tomato into the fridge. The required
actions are defined as [(’Knife’, ’PickupOb-
ject’), (’Tomato’, ’SliceObject’), (’SinkBasin’,

’PutObject’), (’TomatoSliced’, ’PickupObject’),
(’Fridge’, ’OpenObject’), (’Fridge’, ’PutObject’),
(’Fridge’, ’CloseObject’), (’Fridge’, ’OpenOb-
ject’), (’TomatoSliced’, ’PickupObject’), (’Fridge’,
’CloseObject’), (’CounterTop’, ’PutObject’)].

In most of the failed runs, we found that when
the agent is performing the first action of picking
up the knife, it picks up a cooking shovel instead
due to the visual segmentation incorrectly detected
it as the knife. This resulted in a cascade of vari-
ous different failures later on with different runs,
while most runs with GT S finishes with success as
they picked up the correct knife. This observation
once again highlighted that the visual segmenta-
tion accuracy is the bottleneck for the ALFRED
task. Additionally, some of the runs will ignore
the ”can’t slice object without knife” error, and
proceeds with the next actions without cutting the
tomato, resulting in failure of finding TomatoSliced
later on. Collectively, this exposed the limitation of
the FILM/Prompter pipeline, as they do not have
mechanisms to backtrack to the last action once an
action is considered done.



Figure 8: A part of the TV drawer is wrongly detected
as the CellPhone object in the task.

7.5.4 Episode 48

In Episode 48, the task is to cut a lettuce similarly
to Episode 19, but then take the sliced lettuce out
of the fridge and put it into the garbage can. The re-
quired actions are defined as [(’Knife’, ’PickupOb-
ject’), (’Lettuce’, ’SliceObject’), (’SinkBasin’,
’PutObject’), (’LettuceSliced’, ’PickupObject’),
(’Fridge’, ’OpenObject’), (’Fridge’, ’PutObject’),
(’Fridge’, ’CloseObject’), (’Fridge’, ’OpenOb-
ject’), (’LettuceSliced’, ’PickupObject’), (’Fridge’,
’CloseObject’), (’GarbageCan’, ’PutObject’)].

In these runs, we observed the same error of pick-
ing up a cooking shovel instead of a knife as that
of Episode 19. Additionally, as shown in Figure 9,
the correctly sliced lettuce is detected as multiple
different lettuces by the visual segmentation, result-
ing in never finding the object LettuceSliced. In
addition to highlighting the segmentation being the
bottleneck of the ALFRED task, this suggests that
using only a pre-trained segmentation model may
not be sufficient for the ALFRED task, as specific
objects like LettuceSliced in contrast to Lettuce
may be indifferentialable by general segmentation
models.

7.5.5 Episode 110

In Episode 110, the task is similar to that of
Episode 48, minus putting the sliced lettuce
into the fridge and added washing the sliced
lettuce. The required actions are defined as
[(’Knife’, ’PickupObject’), (’Lettuce’, ’SliceOb-

Figure 9: The sliced lettuce is detected as multiple let-
tuce instead of one sliced lettuce.

ject’), (’SinkBasin’, ’PutObject’), (’LettuceS-
liced’, ’PickupObject’), (’SinkBasin’, ’PutObject’),
(’Faucet’, ’ToggleObjectOn’), (’Faucet’, ’Tog-
gleObjectOff’), (’LettuceSliced’, ’PickupObject’),
(’GarbageCan’, ’PutObject’)].

In this example, every run failed. We observe
that in most runs, the agent successfully picks up
the knife, but failed to find the lettuce from the
image. Some of them mistakenly recognize a green
cup in the sink as the lettuce and attempts to cut it,
while others roam around without ever successfully
finding it. This observation is especially interesting
as the runs with GT-S also fails to find the lettuce.
We further looked through every RGB frames in
the agent’s trajectory, and were not able to find a
lettuce within the agent’s segmentation either. We
further examined the run with the highest overall
success rate GT S/D FILM LA, and found that in
all its 5 failure runs within the total 128 runs, 4 of
them describe a task as Episode 110, and all failed
with finding lettuce, suggesting that this error run
may be caused by a mistake either in the ALFRED
dataset or from its backend engine procThor.

7.6 Analysis of New Models

7.6.1 Depth Anything
Our results show an improvement in depth pre-
diction accuracy when using the ”Depth Anything”
model over the baseline prompter depth model. The
mean MSE for the ”Depth Anything” model was
0.052, while the baseline model achieved a mean



MSE of 0.087, indicating an increased performance
when using the ”Depth Anything” model.

Model Mean MSE Improvement
Prompter’s Depth 0.087 -
Depth Anything 0.052 40.23%

Table 7: Comparison of MSE values between the base-
line depth model and the ”Depth Anything” model.

The improvement in MSE, quantified as approx-
imately 40.23%, indicates that the ”Depth Any-
thing” model achieves a better MSE in depth esti-
mation compared to the baseline model when com-
puting this across the ground truth depth predic-
tions. This enhancement can be attributed to the
advanced learning mechanisms and robust data han-
dling capabilities of the ”Depth Anything” model.

7.6.2 Mask DINO
The results on the validation set are shown in Table
8. Due to the limitation of the size of our fine-
tuning dataset and that we used the same model for
both small and large objects, our fine-tuned Mask
DINO is outperformed by Prompter’s original in-
stance segmentation module.

Methods AP AP50 AP75

Prompter 88.232 90.759 68.709
Mask DINO 41.275 67.035 41.118

Table 8: AP, AP50, and AP75 of Prompter’s original
instance segmentation versus the fine-tuned Mask DINO
on validation set.

We further investigated the performance of our
fine-tuned Mask DINO by evaluating on a subset
of the training set which our Mask DINO was not
trained on. The reason for this additional evaluation
is that we were not able to obtain enough samples
from the validation set to obtain at least one sam-
ple for each of the target classes, thus resulting in
NaN per-class average precision for 31 out of 95
classes, which is insufficient for our analysis of the
performance of our model. We show the evaluation
results in Figure 10. We can observe an overall bet-
ter average performance compared to the validation
set, showing that our model performs better for the
classes not included in the current validation set.
Additionally, we can also observe that our model
mainly performs poorly on the small objects, while
Prompter used two separate models for small and
large objects.

Figure 10: Mean Average Precision of Mask DINO eval-
uated on unseen training set. Notice APm and APl (for
middle and large objects) achieve similar performance
as Prompter’s instance segmentation, but APs (for small
objects) performs relatively poorly.

7.7 Qualitative Analysis

7.7.1 Depth Anything
To visually represent the model performance, we
selected three episodes (300, 1250, 1550) to show-
case the depth prediction quality. Table ?? illus-
trates the performances qualitatively.

Figure 9 contains visualizations help to quali-
tatively validate the numerical findings, offering
a clear visual understanding of how the ”Depth
Anything” model appears to have a clearer depth
prediction when compared to the prompter’s cur-
rent depth model.

7.7.2 Mask Dino
We visualize the instance segmentation results for
comparison in Table 10. As seen in the ground
truth, there are often scenes where objects are
placed very close to the camera frame, objects for
the same class appear right next to each other, and
only partial views of objects are collected. Addi-
tionally but not perhaps featured in the visualiza-
tions, there are objects are with different sizes, seen
in different lightning conditions, and occluded by
other objects. The Prompter baseline segmenta-
tion model performs well in some situation where
our undertrained model does not. These situations



Qualitative Comparison Between Ground Truth, Depth Anything, and Baseline Prompter Depth.

Ground Truth Prompter Depth Depth Anything Depth Prompter Error Depth Anything Error

seem to be when instances of the same class are
next to each other or when objects seem blend into
the background. However, our model seems to
do better at recognizing objects with partial views,
which is essential for locating unseen objects dur-
ing navigation. If the segmentation model can bet-
ter detect objects in partial views, this will likely
have a direct positive effect on success rate as the
search policy will be able to switch to acting on the
object instead of missing it.

8 Conclusion

The development of embodied agents, particularly
in the context of Embodied Instruction Following
(EIF), is crucial for advancing AI’s ability to inter-
act with real-world and simulated environments.
Our investigation focused on the Prompter and
FILM methods, assessing their performance on
EIF tasks within the ALFRED dataset. The evalu-
ation included an updated vision pipeline, with a
detailed analysis of segmentation and depth-based
tasks, revealing several key insights.

Firstly, our experiments showed that the use of
ground-truth data for depth and segmentation sig-
nificantly boosts task success rates, with minor
variations across different semantic policies. How-
ever, when transitioning to learned models, seman-
tic policies play a more critical role in determining
performance. The Local Adjustment setup gener-
ally exhibits greater resilience when using learned
models, especially with CNN, indicating its poten-
tial in compensating for reduced data quality.

Secondly, by integrating advanced models like
DepthAnything and MaskDino, we observed im-

proved accuracy in depth estimation and compet-
itive, albeit lower, performance in segmentation.
The ”Depth Anything” model achieved a 40% im-
provement in mean square error (MSE), while the
fine-tuned MaskDino model demonstrated chal-
lenges in handling smaller objects compared to
Prompter’s existing instance segmentation. Despite
these improvements, issues with action execution
and object detection remain, emphasizing the need
for further refinement in visual pipelines and se-
mantic policies.

Overall, our analysis highlights the importance
of accurate data and robust vision components in
ensuring consistent performance in complex EIF
tasks. The discrepancies between ground-truth and
learned models underscore the need for continued
research into improving learned components to
achieve results on par with ground-truth setups.

9 Future work and Limitations (0.5-1
page)

Our segmentation model was fine-tuned on a small
subset of the full training data and trained for a
limited period, leading to a potential limitation
in its generalization capacity. Additionally, the
baseline uses two models for segmentation—one
for small objects and one for large objects. Fu-
ture work could explore using multiple models to
improve the performance of our segmentation ap-
proach, especially for objects of varying sizes and
under different lighting conditions.

Regarding depth estimation, our depth models
were not fine-tuned in the ALFRED environment,
relying solely on pre-trained monocular depth pre-



Table 9: Comparison of Ground Truth, Depth Anything Predicted Depth, and Error Maps

Ground Truth Depth Anything Error Map

diction. Fine-tuning on ground-truth metric depth
in this environment could improve performance.
Monocular depth prediction has inherent limita-
tions, as it relies on single RGB frames to estimate
depth without multi-view references. A more theo-
retically robust approach would involve multi-view
depth estimation, offering a more accurate and re-
liable depth measurement. Additionally, our use
of the DepthAnything model, which produces dis-
parity, poses a challenge when converting disparity
into depth, leading to potential accuracy issues.

Beyond segmentation and depth, future work
could focus on enhancing semantic policies. The
current semantic policy lacks flexibility when er-
rors occur or when tasks require backtracking. Im-
proving semantic policy resilience could lead to

more robust agent behavior, especially in complex
tasks involving dynamic interactions.

Another area for further research involves foun-
dational models and unsupervised learning tech-
niques. Our baseline models benefited from using
pre-trained foundational models. Future research
could investigate the impact of incorporating larger
and more diverse data sources for unsupervised
learning, aiming to improve adaptability and gener-
alization in real-world scenarios.

Furthermore, addressing limitations in task ex-
ecution and object interaction could provide sig-
nificant performance gains. Our qualitative anal-
ysis revealed that some models struggle with spe-
cific actions or tasks, suggesting a need for im-
proved action planning and error handling mech-



Table 10: Comparison of Instance Segmentation of Ground Truth, Prompter, and Mask DINO

Ground Truth Prompter Mask DINO

anisms. Efforts to refine these aspects could lead
to more reliable and consistent performance in em-
bodied instruction-following tasks, especially in
real-world applications.



10 Ethical Concerns and Considerations

While embodied robotics, involving robots with
physical forms interacting in real-world environ-
ments, typically raises significant ethical consid-
erations, this paper does not delve into specific
ethical issues. Instead, it focuses on technological
advancements aimed at improving the capabilities
and efficiency of embodied robotics. The primary
concern here is enhancing the design and function-
ality of these robots without addressing the broader
ethical implications such as job displacement, pri-
vacy concerns, or the moral aspects of autonomous
decision-making. The paper assumes that exist-
ing ethical frameworks are sufficient to guide the
development and application of these technologies.
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